CO₂/pH CONTROL WITHOUT PROBES IN SHAKEN MAMMALIAN CELL CULTURES Christoph Eigenmann, Martin Jordan, Florian Wurm Faculty of Basic Sciences, Federal Institute of Technology, Lausanne (EPFL), Switzerland ## Introduction Process optimisation with mammalian cells requires multiple parameter testing in numerous experiments. Shaken systems allow cheap, reliable and flexible screening experiments and are therefore widely used in process development. A major drawback of shaken systems is the limited direct control of the pH and the gas exchange, factors that may affect productivity and growth of cultivated cells. This poster displays methods to control the pH of the culture medium in shaken reactors by controlling the CO₂ partial pressure of the gas in contact with the culture. # The pH <-> CO₂ equilibrium ${\rm CO_2}$ dissolves in aqueous solutions and reacts with ${\rm H_2O}$. The formed acid ${\rm H_2CO_3}$ is in equilibrium with bicarbonate ${\rm HCO_3}$ -, an ion that is commonly added to the culture medium as sodium salt. Fig. 1 Chemical equilibria involved for CO₂ dissolving in water (equilibrium constants for T = 37°C and I = 0.16M) The bicarbonate ion HCO₃ acts as a pH buffer in the culture medium. Its concentration is regulated by the CO₂ partial pressure of the gas phase. The chemical equilibria involved in the dissolution of ${\rm CO_2}$ can be simulated. The resulting dependency of the pH of the culture medium on the ${\rm CO_2}$ partial pressure of the gas phase is displayed graphically as a function of the sodium bicarbonate concentration in figure 2. By controlling the CO₂ partial pressure of the gas in contact with the culture medium, the pH can be adjusted to the ideal value for any medium buffered Fig. 2. Calculated P(CO $_2$) <-> pH equilibria curves for different sodium bicarbonate solutions (ionic strength I = 0.16M) bicarbonate. Acified solutions (i.e. due to lactate synthetized and CO_2 produced by the cells) can be brought to a optimum pH by degassing CO_2 out of the reactor vessel. ### References with sodium James N. Butler; *Ionic Equilibrium*; 1998; John Wiley & Sons Inc.; New York W.G. Whitman and W.K. Lewis; *Film Theory*; Industrial Chemical Engineering, 16; 1215 (1924) ### Acknowledgements: Great thanks to - Kühner AG (Switzerland) for letting us use a shaker of type ISF-1-W - TPP (Techno Plastic Products AG, Switzerland) for the reactor tubes ### **Materials and methods** The experiments are performed in a shaker with CO₂ control. Plastic tubes with a filter cap are used as shaking vessels. The filter cap allows gas exchange between the inside of the reactor tube and the incubator atmosphere. Fig. 3 Incubator with shaken tube reactors and CO₂ control The gas transfer resistances at the gas-liquid interface and at the filter cap prevent a free gas exchange from the culture medium to the gas phase. # CO₂ gas transfer Measuring the transfer of CO_2 out of the reactor tube, a gas transfer coefficient k can be defined. This coefficient characterizes the transfer resistance of the system. Fig. 4 Degassing CO₂ out of the reactor tube: influence on CO₂ concentration and pH of the reactor medium. Different system parameters yield different gas transfer resistances, corresponding to different gas transfer rates. ### Conclusions An incubator with ${\rm CO_2}$ controlled atmosphere allows exact adjustment of the pH of the cell culture medium. A decrease of the pH of the medium through CO_2 or acid production of the cells can be prevented by adjusting the CO_2 partial pressure of the gas in contact with the culture medium. This adjustment is done by controlling the CO_2 concentration in the incubator or by alternating the CO_2 transfer from and to the reactor flask. The CO₂ transfer from and to the culture medium can be influenced by the following parameters: - The shaking power input (shaking speed and radius) - The filling volume - The nature and size of the filter in the filter cap Fig. 5 Influence of the shaking power input on the gas transfer. The stronger the shaking input, the greater the gas transfer.